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Neyman's Restricted Chi-Square Tests

:!eil H. Timm

University of Pittsburgh

Abstract

A historical presentation of ;leyman's -es.tricted cni-square tests is
introduced with a discussion of its theory and applicability to education
included. This presentation of a statistical procedure developed by matf.-
ematical statisticians alloes researchers in the behavioral sciences a fa-
cility eith the method for application in their particular research.

Introduction

Karl Pearson's (1900) chi-square test criterion for contingency tables

has been employed in many areas of educational research t,herever mutually

exclusive and exhaustive qualitative events occur. reyman's (1949) classi-

cal paper, which has remained unnoticed by educational methodologists along

with the fix, Hodges and Lehmann (1959) article, extends the analysis of

categorized data by restricting the class of admissible hypotheses. Before

considering the consequences of !eyman's modification of the chi-square

test, a review of Pearson's (unrestricted) chi-square procedure will he made.

The Unrestricted Chi-Square Test

For illustration, consider a two-ay rxc contingency table. Suppose

n observations can be classified according to two characteristics, A and B,

with Al, A2, ..., Ar and BI, B2, ..., Be mutually exclusive and exhaustive

categories. The observed frequency in the cell AiBl is denoted by nii and

the probability represented by Pij. Also define
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Since each of the n observations have to be classified into one of the rc

cells, it follows that

E Enl. =. , = n
i j j i

En1 =En
'J

r
j
r p,3 . = E p1. = E p . = 1

1 i . j .3

The class of admissible hypotheses n is represented by

2 = { pi j> 0 with E E p,. = 1

i j 13

i=1, r, j=1, c

where parameters are p11, p,2,
pre

and the sample size is nll,
n12,

'"' nrc'

Although there are many hypotheses which may be tested under the above

model, only the test of independence is considered. To test the hypothesis

H of independence

H: pij = pi.p.j 1=1, ..., r, j=1, c

that the parameters belonp to w, a subset of n, where

w = pij such that pij a n and pij = pl.n.j

1=1, r, j=1, c

it is necessary to find estimates of pii that minimize

X 2
1

z
(n

ij
-np

ij
)2/no

13
= E

(0-E)
2

H j
E

under w such that E E
pii

= 1.

In general, the distribution of XH
2

depends on the estimation proce-

dure and on the number of unknown parameters. R.A. Fisher (1924) was the
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first co find the limiting distribution of XH2 for an important class of

methods of estimation under rather general conditions. Fisher illustrated

that as n tends to co and the number of cells remain fixed, the distribu-

tion of X112 tended to a x
2
f(8) distribution on f(H) degrees of freedom;

f(H) being the number of cells minus the number of independent parameters

estimated minus 1. Cramer (1946, page 424) and Heyman (1949) extended

Fisher's results. Neyman shooed his outcome true for any best asympototi-

cally normal, BAP!, estimates which include maximum likelihood, minimum chi-

square, minimum modified chi-square and Nevman's minimum "linearized" chi-

square estimates.

The distribution of the random variables Nip °12' ''arc under the

above model is by definition, multinomial,

Pt (H11"11), "" (nrs=nrs) I °
}

n 5 / E ni't
i j 13 ij

with E E n. and F E p.. = 1. Under II, the maximum likelihood estimate of
1 j j "

A
oil is pij = ni.n.j/n

2
so that the observed value of XH

2
is

2
X = t E (n11 -n n /n)

2
/ ni.n.j/n.

1.

/. A
If n is large and not too many of the pii's are small (all npij's > 3), then

XH
2
is distributed approximately under H as a x

2
f(H) with f(H) = rc- (r +c -2)

-1 = (r-1)(c-1) degrees of freedom. This procedure may be used with caution

even if some of the expected cell frequencies are less than 1 provided n is

large and rc is moderate (greater than 6).

One often finds that researchers reproup their data to remove low ex-

pected values. This procedure effects the power of the chi-square test and

if estimates of the parameters are based on the ungrouped data the limiting
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distribution of X
H

2
is not chi-squared (as it is when the estimates are

based on the grouped data) according to Chernoff and Lehmann (19!;4).

The unrestricted chi-square test may be used to test nearly any hypo-

thesis in which observations are grouped into distinct cells (a weak re-

striction) for which BAN estimates of the expected cell frequencies can be

found. The test is easy to apply, consistent against all alternatives to

the hypothesis tested and sensitive in all directions. However, in any

particular problem it may be less desirable than a test designed to test

particular alternatives.

Restricted Chi-Square Tests

Under the class $) of admissible hypotheses, Heyman iMPOSOS restric-

tions on the cell probabilities pi, p2, ..., pm. Given these restrictions,

the hypothesis H further constrains the relations among the pi's. For

example, the probabilities under the general model 0 may depend in a par-

ticular manner on some unknown parameters 8 = (01, 02, ..., 0s) so that

we may write pk(e) under 0. The hypothesis H can, for example, specify

that 02 = 0. Under this restriction, the unrestricted chi-square test

would seem to be undesirable since this statistic does not consider what

happens under R. Intuitively, the chi-square criterion should test the

hypothesis H against n - H and not apinst the most general possible al-

ternative in 0. Neyman's restricted chi-square test does exactly this;

the restricted chi-square criterion is the difference

XR
2

= XH2 - X02.

This difference measures the increase in chi-square iroosed by the addi-

tional restrictions in H, over those in 0.

J
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Fiore formally, suppose n observations XI, X2, ..., Xn are classified

into m mutually exclusive and exhaustive cells, and that the number of ob-

servations recorded in the k
th

cell is x . Under n assume that the proba-

bility of any X occurring in the kth cell is pk(e) pk(el, ..., es) in-

volving s < k unknown parameters and that under H assume that the problibi-

lity is 7k(e) = nk(01, ..., es) where H n and E p,(e) = 1 and pk(e)>c2>0
k

for all k. Further, let e be a SAO estimate of 0 under H and a under El.

Define the restricted chi-square criterion as

X 2 = X 2-X 2 = rEl ("'"n7:6))2 iP(x'-n ())26
R H

i=1 i=1
A ti

n r.(0) np (e)

with

f(R) = f(H) - f(n)

degrees of freedom. f(n) is the total number of independent cells minus

the number of independent parameters estimated from the data under n; and

f(H) is the sane under the hypothesis H.

It should be observed that X 12 is the unrestricted chi-square descri-

bed by Pearson and thus has the same number of degrees of freedom as before.

Heyman (1949) shows that the restricted chi-square criterion X
R

2

(given n) has, asymptotically as n 4 ce and m remains fixed, a chi-square

distribution on f(R) degrees of freedom. He also shows the asympotic equi-

valence of his criterion ilith the Hilks A-criterion, a result which is in

agreement with the unrestricted case.

The test statistic X
2

may be employed to test n against more general

hypotheses with only trivial restrictions (such as
k
E p

k
= 1). Thus, X

n

2

may be used to test the model. Upon rejection of the model, one can

6
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either relax the conditions under 12 to some wider class Q* or abanuon n el-

together and use the most general class of admissible hypotheses. In this

case, X2 would become the test criterion rather than XP.

In utilizing the restricted chi-square test in practice, the model

must be tested. The procedure Woes one to compute

X' which tests H against all admissible hypotheses

X 2 which tests a against all admissible hypotheses

X
2
which tests fi against c (admissible) hypotheses

Asymptotic Power Calculations

A general idea of the power of the test under consideration Is re-

quired in educetional research. Casic to the approximation of power in con-

tingency tables is the noncentral chi-square distribution with non-centrality

parameter 4
H

and one or more alternative hypotheses k c K. Wald (1943) has

shown how one may estimate the non-centrality parameter for large samples.

Let H be a particular hypothesis and T(Xl, Xn) under an alternative

k c K; just as under H, the central chi-square distribution is supposed to

approximate the discrete distribution of T(Xl, Xn). Further, the ap-

proximate non-centrality parameter 4) under an alternative k c K is the

value of the statistic T(X1, Xn) with the expected value of X1 under

K substituted everywhere for Xi. Hence epti = T(EkX1, EkXn).

Tables prepared by Fix (1949) and Fix, Hodges and Lehmann (1959) are

available to allow easy power calculations by entering with Ni(their x)

and degrees of freedom f.

For fleyrnan's restricted chi-square test, the same rule applies; ho-r-

ever, 4 H
and is required.

teA



7

Example

An educational researcher elects to study the relationshin betieen

students having to satisfy the statistics methodology requirement and the

advent of those students being placed on scholastic probation, A (hypo-

thetical) random savple of students who enrolled in the College of Educa-

tion has been collected.

Let j denote the number of quarters of statistics completed (j=0, 1,

2, 3, 4 or more) and i denote leiether a student has ever been un probation

(1=1, yes;i =2., no). Rather than merely testing .ihether going on probation

is independent of the number of quarters of statistics completed, the ques-

tion might be whether the probability of beim-, on probation decreases as

the number of quarters of statistics completed increases.

Under n, the model becoles

P: Hultinomial (p.., n) where

n= E n.4 ; E E n4 = 1
lj 4 ij

and

p
lj

= (a + a (j-2))P4

or since pli + pzi =

Pzi = (1 - a - a (j-2))1:14

j=0, 1, 2, 3, 4

Some type of relationship would be expected to exist among the pii's as

j increases, the probability of running into academic difficulty would be

less likely. That the model is linear will have to be checked. The para-

meter 0 measures the increased difficulty due to the statistics require-

ment, and a is a sort of average pi., .



Under the hypothesis II, that no linear relationship exists, it is

desirable to test

H: 0 = n

K: a/0

The data for this study folloil

i = on nrol-,ation

at any time

yes

no

j = number of quarters

0 1 3 tl or

more

16 3 2 20 50

11 17 7 4 115 154

27 2G 10 G 135 204

To anply the reyman restricted chi-snuare test to this data, estimates

of a and 0 under fl are necessary. Fron this model

pli = (a + (1-2))n
.1

or

pii

.j

Since a nultinomial distribution exists, the maxinum likelihood estimate of

pij nii/n

-

n.1 ti.j/n

letting
4

S(a,0) = E ((n/n i) - ot-B0-2))2n i.
1=0 LI

Taking nartial derivatives with respect to a and sand equating to zero,

the folloulna equations result

nii n

" 4

+ st n.40-0
1

9



Employing the data,

j

n (,i -2) = aE n .(.i-2) + Or n .(.i -2)2.

= 204a + 19611

1 = 196a PO8

a

^ A
solving this system yields the estimates acz = .33702, 5s1 = -.09567.

A

Estimating the parameters under H: a = 0, only an needs to be found.

llnirnizing

G(a) =

J

with respect to a yields

Thus, under

and under H

' =

nl. 50

a = .24510
n 204

I
p
ij

= (.33702 - .09567 (.1 -2)) n (1)

./

n, = (.24510) p.I (2)

A 1 J ,N p, A
where p.0 = .1323, p.1 = .1275, p.2 = .0490, p.3 = .0294, and n.4 = .6618.

In terms of equations (1) and (2), the expression for X! becomes

2X = X2 - N2
R H a

4
A

2
= r

(n -nn )

E
(n -nn

ij

)

---A---- 4 4

np
ij "4 np

ij

The expected tables under H and n are respectively:

= nurter of quarters

6.615 6.375 2.450 1.470

20.385 19.625 7.550 4.530 101.910

50

154

27 26 10 6 135 204 111



0:

so that

j = number of quarters

14.261 11.254 3.369 1.443 19.665

12.739 14.'46 6.631 4.552 115.332

50

154

27 26 10 135 204

X- = 26.343 where f(H) = 4

X = 1.590 where f(a) = 3

X2 24.753 where f(P) = 1

10

The statistic X
2

is employed to test the model assumptions. The de-

grees or freedom f(n) is obtained by subtracting the number of independent

parameters estimated (6) from the number of independent cells (9). Since

Nn
2

x3.(,93)= 7.81, the model assumptions are tenable.

Given that the model 4ssumntions are satisfied, testinn the hypothesis

2
H: B = 0 anainst the alternative K: B # 0 may proceed. Since XI

2
> xi (.(15)

3.84 the hypothesis of indeneneence is rejected (the sane conclusion as

reached by the unrestricted test).

rore information has bee;' Pathered by use of the restricted chi-square

procedure hecause of a prediction equation involvinn the cell probabilities

has been obtained

A
pli = .33702 - .09557 (i -2) p.i

pil = .33702 - .095(;7 (1-2) (n.j/n) for i=0, 1, 2, 3, 4.

This type of relationship could not have been procured by an unrestricted

chi-square procedure. At nost, a phi coefficient ninht have been calcu-

lated.

11
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Having a regression equation for the probabilities, asscJation of

a(l -a) confidence interval for the coefficient 0 is sought. Employing

the formula,

6 - r',4(.95) < s < 6 + o /4-(7,ii

the following approximate 1 - a confidence interval fors is created.

-.11 < < .08.

As expected, zero is not included in the interval, anain verifying that a

is significantly different from zero.

Power Calculations

The power of a restricted chi-square test is always greater than an

unrestricted chi-square test given that the alternative of interest reason-

ably satisfies the model restrictions. Deciding on whether to use restric-

ted or unrestricted chi-square tests reduces to a choice between excellent

power for a limited class of alternative or weak power for every other

(Fix, Hodges, Lehmann, 1959).

To compute power in the example considered, all values of oij for

pij c k must be specified and
4R

by the 'laid (1954) orocedure needs to be

evaluated.

= E CE(P'

"
lk) - E(Nijik1H)) 2 /E(NulkiH)

- E (E(N lk) - E(Nijikla))
2
/E(Nulkin)

4'n

But since k c n, it is observed that o
n
= 0 so that 0

R
=

H
with degrees

of freedom equal to f(R). By contrast, the power of an unrestricted chi-

square test is obtained by use of OH with degrees of freedom f(H).

12,
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The above relationship indicates
the necessity of always testing

the model; when the model assumptions are not satisfied the unrestricted

chi-squara procedure should he employed since power will he larger.

Conclusion

The purpose of the preceeding example and discussion of the ,eyman

procedure was to familiarize researchers with a pseful te'hnicue for

analyzing continnency tables. However, the analysis also displays the

need for researchers to check model assumptions and nower in order to

produce constructive analysis.



13

References

Chernoff, H. and E.L. Lehmann (1954). "The use of maximum likelihood esti-

mates in X4 tests for goodness of fit," Annals of Mathematical Sta-
tistics, Volume 25, pages 579-586.

Cochran, William (1955). "A test of a linear function of the deviations be-
tween observed and expected numbers," Journal of the American Statis-
tical Association, Volume 50, pages 317:39 :-

Cramer, Harold (1946). Mathematical Methods of Statistics. Princeton Uni-
versity Press.

Fisher, R.A. (1924). "The conditions under which x
2
measures the discrepancy

between observation and hypothesis," Journal of the Royal Statistical
Society, Volume 87, pages 442-449.

Fix, Evelyn (1949). "Tables of noncentral x2," University of California
Publications in Statistics, Volume 1, pages 15-19.

Fix, F., Hodges, J.L. and Lehmann, E.L. (1959). "The restricted chi-square
test," Probability and Statistics, The Harold Cramer Volume. John
Wiley & sons, pages17-107.

Heyman, J. (1949). "Contribution to the theory of the x
2

test," Berkele
Symposium on Mathematics, Statistics and Probability, panes - .

Pearson, Karl (1900). "On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have risen from random
sampling," Philosophical Magazine, Volume 50, pages 157-172.

Wald, A. (1943). "Tests of statistical hypotheses concerning several para-
meters when the number of observations is large," Transactions of the
American Mathematical Society., (3), Volume 54, pages 426-482.

14


